Marine Life Protection Act Initiative

Spatial Bioeconomic Model Evaluations of Round 1 External Proposed MPA Arrays for the MLPA North Coast Study Region

Presentation to the MLPA Blue Ribbon Task Force
May 3, 2010 • Crescent City, CA

Dr. Eric Bjorkstedt, Co-chair • MLPA Master Plan Science Advisory Team

3

Why Models?

- MPA size and spacing guidelines are presented as ranges of values that are minimum or maximum thresholds
- Spatially explicit models augment the MPA size and spacing guidelines by:
 - counting benefits of MPAs that are larger or closer to each other than size and spacing guidelines
 - evaluating contribution of MPAs that do not meet size and spacing guidelines
 - simultaneously assessing conservation and economic consequences of MPAs
 - accounting for context (e.g., fleet dynamics, fishery management, location of habitat within MPAs)

Model Inputs

Geographic

- -Habitat maps
 - -Ocean circulation
 - Proposed MPA boundaries and regulations

Species-specific

- Life history (growth, natural mortality, fecundity)
- -Adult movement (home range diameter)
- Larval dispersal (pelagic larval duration, spawning season)
- Egg-recruit or settler-recruit relationship

Fleet response

- -Spatial abundance of fish
- -Distance from port

Model Outputs

- All outputs are based on long-term steady states—What will the system look like 30 to 50 or more years from now?
- Each output is calculated for a range of assumptions about future fishery management outside MPAs:
 - Conservative management
 - Maximum sustainable yield (MSY)-type management
 - Unsuccessful management

Model Description

• For Round 1, two models were used:

- University of California, Davis (UCD)
- University of California, Santa Barbara (UCSB)
- For Round 1, four species were modeled:
 - Black rockfish
 - Cabezon
 - Redtail surfperch
 - Red sea urchin

Consideration of Tribal Uses

- In Round 1, SAT evaluated all MPAs that proposed allowing tribal uses only (including some SMCAs in ExC) as no-take SMRs because SAT currently does not have sufficient information to consider tribal uses in evaluations
- In subsequent rounds, SAT will evaluate no-take areas as SMRs; MPAs that allow any type of consumptive uses will be evaluated according to level of protection afforded by the suite of proposed uses

Consideration of Mobile MPAs

- External MPA Array A (ExA) proposed mobile MPAs that are intended to shift each year within a specified zone
- For Round 1, mobile MPAs considered static for the purpose of modeling evaluation
- In External MPA Array A, affected MPAs are:
 - Crescent City Mobile SMCA
 - Trinidad Mobile SMCA
 - Eureka Mobile SMCA
 - Shelter Cove Mobile SMCA
 - Novo Mobile SMCA
 - Albion Mobile SMCA
 - Point Arena Mobile SMCA

Updates for Round 2

Additional fine-scale habitat data will be

- included
- UCSB and UCD models will be integrated
- Three (3) more species will be modeled:
 - Red abalone
 - Brown rockfish
 - Dungeness crab
- External MPA arrays will be re-run with updated data and model before Round 2

Model Outputs

Conservation

- Maps of larval settlement and biomass
- Total settlement and biomass (summed over study region, weighted sum across species)

Economic

- Maps of fishery yield
- Total fishery yield (summed over study region, weighted sum across species)

Other Model Outputs

- Maps of fishing effort
- Connectivity patterns that integrate larval production, dispersal, and settlement

Model Results: Black Rockfish Biomass

- Map represents predicted spatial distribution of biomass
- Outputs available for each:
 - Model species
 - Proposal
 - Management scenario
- Maps are posted online for:
 - Biomass
 - Fishery yield
 - Fishing effort
 - Larval production
 - Biomass for each MPA (deletion analysis)

21

Conclusions

- Assumptions about fishery management outside MPAs influenced the outcomes more than differences between proposed external MPA arrays
- ExA, ExD, ExE and ExC consistently had highest* conservation value; rank order varied among models and management assumptions
- Ex0, ExB, ExF, ExG and ExH had highest* economic value for all models under MSY-type or conservative management
- ExA and ExE (UCSB model) or ExD and ExE (UCD model)
 had the highest* economic value under unsuccessful
 management
- All model outputs from Round 1 evaluations posted to MLPA website (www.dfg.ca.gov/mlpa)

*Outputs focus on 4 species: Black rockfish, cabezon, redtail surfperch, and red sea urchin.